The League of Extraordinary Biologists

By Tom Matlack | Boston Magazine |

To understand the hype around stem cells, it helps to first understand how they work. Crudely put, stem cells are like clay. Crudely, because clay cannot regenerate, cannot make more of itself, but also because the core of the analogy—the shared pliability—sells stem cells short. There are only so many things you can make out of clay, whereas stem cells can grow, or be grown by researchers, into brain cells, bone marrow cells, muscle cells, and so on. You can study how stem cells make more stem cells through cell division and gain insights into cancer, whose tumors are thought to form when cell division goes awry. You can manipulate stem cells to carry a disease, then test a potential therapy directly on them, supercharging the typical drug-discovery process and opening the door to entirely new medicines to fight the ravages of Alzheimer’s, Parkinson’s, and diabetes. All this is why stem cells are the source of such excitement, and of the kinds of hopes and pressures that rest on stem cell scientists like Wagers, Eggan, and Hochedlinger.

Modern stem cell research has its foundation in cell cloning, which scientists have been experimenting with for roughly 50 years. In the late 1990s one of the biggest names in cloning—and therefore the nascent stem cell field—was Rudolf Jaenisch, a curly-haired German who looks like a cross between Einstein and Mark Twain. Scottish researchers had just cloned Dolly the sheep, but Jaenisch, cofounder of MIT biomedical research collective the Whitehead Institute, soon advanced the miracle of Dolly through something called nuclear transfer. The process involved microscopically inserting the nucleus of an adult cell into a "denucleated" egg cell; this in turn allowed for the cloning of new cells. With the tools available at the time, nuclear transfer demanded more than mere brilliance. It required such manual dexterity that only a handful of people in the world could perform it, and none as well as Jaenisch. That gave him a virtual monopoly on cloning that lasted nearly a decade.

In 1998, Jaenisch came to the National Institutes of Health to give a lecture. Sitting in the audience was Kevin Eggan, then working at NIH. Jaenisch’s presentation blew him away. He reached out to Jaenisch afterward, and soon decided to give up his job to pursue a Ph.D. in biology at MIT.

Eggan grew up in Normal, Illinois. "I am, of the men in my family, the soft scientist, the weak intellectual link," he says. "My dad’s a number theorist, and my brother works for the Aerospace Corporation now and can’t tell me what he does." At the University of Illinois, Eggan got as far as abstract linear algebra before turning to biology and eventually microbiology. He had been headed to medical school when he had second thoughts, and deferred for the opportunity at NIH.

At MIT, Eggan quickly became known for the same thing at which Jaenisch excelled: nuclear transfer (or as Eggan describes it, "the hardest video game you’ve ever played"). His work required him to spend full days bent over a powerful microscope, using joysticks and foot pedals to zoom in and out on cells that—even under magnification—appeared no larger than the tip of a strand of hair. Eggan hunched over these cells so long and so intensely that he developed trucker’s sciatica. Worse, the smallest mistake would send him back to square one. "You have to ask yourself, are you the sort of person that when you got your Nintendo 64 and you started playing Mario Brothers, and you got to that really hard part, could you die a thousand times over and over and over again, and still be motivated to try again?" He was. Eggan mastered nuclear transfer at the age of 26.

  • Sarala

    Wow. Great way to write about a great topic. Couldn't stop once I started reading. Kudos to the scientists, hope the research gets translated into clinical use soon.

  • stem

    In order to grab attraction and make his article more interesting, the author included a lot of strange descriptions and quotes which I doubt are exagerrations. Also, when talking about the science, some details are thawed. I know the target audience of this article is the general public, but that doesn’t mean he can make untruthful descriptions. This is not a fictional story