The League of Extraordinary Biologists

What it’s like to be young, brilliant,  fawned over by multimillionaire investors, courted by universities and corporations around the world, and forever racing—sometimes as teammates, sometimes as rivals—to change medicine as we know it.

In 1999 Jaenisch gave another lecture,
at the Research Institute of Molecular Pathology in Vienna. This time 23-year-old Konrad Hochedlinger was in the crowd. As Jaenisch talked about what stem cell scientists were accomplishing, Hochedlinger sat enraptured. He was studying embryo development at the institute, where he’d received his master’s the year before, but wasn’t satisfied with the work. It didn’t feel big enough. A few days later he e-mailed Jaenisch, saying he would be visiting Boston soon, and asked whether Jaenisch would have half an hour to meet.

Neither of Hochedlinger’s parents had any interest in science. And neither did he, at first—he was into art and architecture. But when his older sister began to study biology, she encouraged him to follow in her footsteps.
Several weeks after his e-mail, Hochedlinger did indeed meet up with Jaenisch in Cambridge. Jaenisch was taken with the young man’s impatience for modest gains. He offered a spot in his lab to Hochedlinger, who gladly accepted. If in Eggan Jaenisch had found a protégé, in Hochedlinger he found something closer to a son.

Eggan didn’t know what to make of the new guy. He had labored for almost two years, mostly on his own, learning nuclear transfer. And now Jaenisch was telling him to teach Hochedlinger. Eggan did as he was asked—and Hochedlinger picked it up in about four months. Then Jaenisch assigned Hochedlinger the task of solving one of the most important questions of nuclear transfer: whether all kinds of cells, not just the stem cells MIT had been studying, could be reprogrammed to make a cloned animal. A proud man, Eggan would not admit it publicly, but he had met his match in this circumspect, ambitious Austrian. It wasn’t that the two outright disliked each other—they worked side by side, drank together after work—but there was no doubt both were keeping score.

Within a year, Hochedlinger was back in his mentor’s office, claiming he’d done it, he’d proven all cells had the ability to produce a clone. While comprehending the science behind this breakthrough would take an advanced degree or two, the details are simple enough: Taking a special kind of mouse blood cell with a singular DNA arrangement—an arrangement that made it easy to track—Hochedlinger removed its nucleus, then transplanted that into a mouse egg cell. When the egg cell begat a baby mouse, the animal carried in all its cells the telltale DNA arrangement. “All I remember is shouting, ‘Yes!'” Hochedlinger says. His study was published in Nature, less than two years after his arrival in Cambridge.

Until that point, Hochedlinger had harbored doubts about his career path. His former academic colleagues in Vienna, many of them now in industry, were earning very comfortable salaries. Meanwhile, he was learning from a world-famous scientist, spending every waking hour in the lab working on his potentially revolutionary research…and earning so little that he couldn’t afford his own apartment, instead sharing a tiny Somerville hovel with roommates. After his cloning triumph, though, the money would come soon enough.


  • Sarala

    Wow. Great way to write about a great topic. Couldn't stop once I started reading. Kudos to the scientists, hope the research gets translated into clinical use soon.

  • stem

    In order to grab attraction and make his article more interesting, the author included a lot of strange descriptions and quotes which I doubt are exagerrations. Also, when talking about the science, some details are thawed. I know the target audience of this article is the general public, but that doesn’t mean he can make untruthful descriptions. This is not a fictional story