The League of Extraordinary Biologists

What it’s like to be young, brilliant,  fawned over by multimillionaire investors, courted by universities and corporations around the world, and forever racing—sometimes as teammates, sometimes as rivals—to change medicine as we know it.

The first outside recruit
pursued by the Harvard Stem Cell Institute was Amy Wagers. She was 30 at the time and based at Stanford, where a pioneering stem-cell biologist named Irv Weissman had accepted her as a postdoc fellow in his lab. The day they met in Palo Alto, Weissman had a pile of fellowship applications on his desk—Wagers had to peer through them to make eye contact—but accepted her on the spot. “It was clear from the moment that she started talking that she was going to be a star in this field,” Weissman remembers. “The clarity of her presentation was astonishing.”

At Stanford, she became known for refuting others’ findings so often, and so thoroughly, that her peers coined a word for it: “Wager-izing.” This sort of work did more than fact-check the field; it informed other stem cell scientists when a lead was not worth pouring precious hours and grant money into. Stem cell research five years ago (and to a certain extent today) was like a vast plot of land presumed to contain oil: Previous findings dictate where you dig. If the hole looks promising, others will soon be digging next to you. Accordingly, it’s to everyone’s benefit to know when there’s no jackpot to be found—that way, the scouring can begin anew, down more promising holes. Wagers was the one pointing out the dry wells.

She scored her biggest debunking while studying how stem cells move in the body. She wanted to see if blood stem cells, in particular, could produce other sorts of cells and thereby help treat diseases unrelated to blood, as was commonly thought. So she resurrected an investigative technique in which she surgically connected the blood systems of two mice to better observe the movement of blood stem cells between them. What she found—what set the stem cell world abuzz—was that blood stem cells could not create heart or liver or lung cells; they produced blood cells exclusively. From that day on, researchers who studied blood diseases like leukemia approached their work thus enlightened.

At the end of her postdoc, Wagers received no shortage of job offers. But when she interviewed at Harvard, “it was the gleam in Doug’s and David’s eyes that convinced me to move all the way across the country,” Wagers says. Less than a month after the Harvard Stem Cell Institute opened its doors in May 2004, Wagers was working at the Longwood medical complex.

[sidebar]Kevin Eggan completed his Ph.D. at MIT in February 2003, and began looking for opportunities outside Jaenisch’s lab. He had liked working with him, but the lab wasn’t really designed to support much more than Jaenisch’s vision.

One day an Israeli postdoctoral student in the MIT lab approached Eggan. “Doug wants to meet you,” he said, referring to Melton. Five or six weeks later, after more back-channel messages, Eggan walked into Melton’s office. The two chatted about how they’d both grown up in Illinois, then got down to business. Melton told Eggan how he believed it would soon be possible to use stem cell technology to create cells that actually carried diseases like ALS or diabetes, then use those cells as a far more efficient way to test new drugs. “I drank the Kool-Aid, 100 percent,” Eggan recalls. He became a junior fellow at Harvard, working in Melton’s lab. After Wagers joined the stem cell institute, so did Eggan, who set about creating the kinds of diseased cells he and Melton had discussed.Within two years, Eggan was testing numerous potential treatments on them—an achievement that earned him a prestigious MacArthur “genius grant.” In the process, he forged the kind of connection with Melton that Hochedlinger had with Jaenisch.

Still at MIT, Hochedlinger had produced his second piece of landmark research: He and a team discovered a way to basically “clone out” genetic defects in mice. With his protégé’s renown swelling, Jaenisch realized it would not be long before he would want to run his own lab.

David Scadden realized that, too, and pounced. Knowing Hochedlinger was also entertaining offers from Sloan-Kettering in New York and Children’s Hospital here, he tried an innovative idea: tying an individual donor—an old-fashioned patron—to this particular scientist. He enlisted Craig Huff, a Harvard Business School alum at Reservoir Capital Group in New York, to contribute a sizable part of the package Harvard would offer Hochedlinger. “Scadden really didn’t have to sell much,” Huff says, “even though that’s something he is pretty good at.” By 2006, Hochedlinger was at the stem cell institute.

The team was now complete. By design, each member was given a research area that would not overlap with the others': Eggan had diabetes and ALS at Harvard; Wagers had adult stem cells at Longwood; Hochedlinger had embryonic stem cells at MGH. “The problems are so immense that it would be silly to duplicate effort,” Melton says. Truth be told, it was also to ensure harmony among Harvard’s young stars, to keep them from vying with one another. But science doesn’t care about harmony. And soon Hochedlinger would have to go toe to toe with the man he revered: his mentor, Jaenisch.


  • Sarala

    Wow. Great way to write about a great topic. Couldn't stop once I started reading. Kudos to the scientists, hope the research gets translated into clinical use soon.

  • stem

    In order to grab attraction and make his article more interesting, the author included a lot of strange descriptions and quotes which I doubt are exagerrations. Also, when talking about the science, some details are thawed. I know the target audience of this article is the general public, but that doesn’t mean he can make untruthful descriptions. This is not a fictional story